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Abstract 

This work aims to compare the capabilities of Imaging Fourier transform spectrometers (IFTSs) that operate in the long-

wavelength infrared (LWIR) and mid-wavelength infrared (MWIR) range for quantifying flare combustion efficiency 

(CE). The two IFTSs were operated simultaneously to measure spectral intensities emitted by a steam-assisted flare at an 

oil refinery in Southern Ontario. Species column densities were inferred from the measured intensity spectra using a 

spectroscopic model, while the velocity field was obtained from feature tracking between successive images. Species mass 

flow rates were then derived by integrating the concentrations and normal velocity along a control line transecting the flare 

plume. The mass flow rate inferred from the LWIR-IFTS was 50 and 190 g/s for CO2 and H2O, respectively, in range with 

70 and 150 g/s inferred from the MWIR-IFTS. Manual fingerprinting showed potential signs of C2H4, C3H6, and C4H10 

from the intensity spectra measured in the LWIR and MWIR. While this work demonstrates the potential for IFTS in 

remote sensing of flare CE, a more robust spectral fingerprinting algorithm is needed in order to obtain reliable CE 

estimates when the fuel is unknown. 

 

1 Introduction 
In the oil and gas industry, flaring is used to convert unwanted flammable gases, mainly hydrocarbons, into less 

harmful species like CO2 [1]. Initially used for safety reasons, flaring is becoming increasingly important in the context 

of environmental stability due to the lower climate change potential of the combustion products compared to the 

hydrocarbons [2]. Flaring performance may be defined by combustion efficiency (CE), which is usually assumed to 

be close to 98% [3, 4]. However, external factors like cross wind or steam assistance may lower this value considerably 

[5, 6, 7, 8]. Consequently, flare operators and regulators urgently need remote sensing techniques to accurately 

quantify flare CE.  

Imaging Fourier transform spectrometers (IFTS) are a promising instrument for flare CE quantification due to 

their high spectral resolution, and their ability to image the entire flare plume [9, 10, 11] as opposed to passive Fourier 

transform infrared spectroscopy (PFTIR), which can only resolve spectral emission along a single line-of-sight (LOS) 

[12]. These instruments generate a 3D data cube, consisting of two spatial dimensions and one spectral dimension at 

typical resolutions of 1 cm-1.  The CE is calculated by inferring species column densities and gas projected velocities 

for each pixel along a control line; the velocities and column densities are combined to obtain species mass flow rates 

[13, 14]. While the infrared range covered by the IFTS varies depending on the camera, both long-wavelength infrared 

(LWIR) and mid-wavelength infrared (MWIR) spectral ranges contain rotational and vibrational bands for the key 

species important to flare CE [15, 16]. However, a qualitative comparison between these camera types highlights that 

the LWIR IFTS may be more accurate because of its ability to detect hot gases as well as cold gases (e.g. cold pockets 

of fuel stripped outside of the combustion zone in the presence of cross-wind) [16]. In this work, a simultaneous 

measurement of a petrochemical flare with both LWIR- and MWIR-IFTS is conducted for the purpose of computing 

the flare CE. 

2 Flare Combustion Efficiency 
Flare CE can be defined as the ratio of mass flow rates of carbon affixed to CO2 (ṁC,CO2) to the carbon entering the 

flare stack via the fuel (ṁC,fuel). In standoff estimates where the fuel type may be unknown, the mass flow rate of 

carbon affixed to the fuel can be approximated as the sum of mass flow rates of carbon contained in all species leaving 

the flare plume. This definition may be expressed as 
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The mass flow rate of carbon affixed to the kth species is found by integrating the product of the species column 

density and velocity along a control line (Θ) that transects the flare plume in the infrared image, and then multiplying 

by the mass fraction of carbon within the kth species: 
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where MC is the combined molar mass of carbon within the kth species (e.g., MC = 12 g/mol for CO2 while MC = 24 

g/mol for C2H4), Mk is the molecular molar mass of the kth species, ρ is the column density (kg/m2), Vn is the velocity 

component (m/s) normal to the control line Θ, and θ refers to a local position on Θ. 

In Eq. (2), the column density of the kth species can be calculated from the ideal gas law, and is derived as 
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where p is ambient pressure (kPa), kB is Boltzmann’s constant, NA is Avogadro’s number, χk(s, θ) is mole fraction of 

the kth species at location s on a pixel LOS that pierces θ, and T is the plume temperature (K). Note that χk × 106 

represents concentration of the kth species in parts-per-million (ppm). The normal velocity Vn in Eq. (2) can be 

calculated by tracking the motion of turbulent structures within the plume between successive images. The unknowns 

for evaluating flare CE are the distributions of mole fraction χk(s, θ) and plume temperature T(s, θ) along a control 

line, and normal velocity Vn, which are all inferred from spectral intensities of infrared light measured by an IFTS.  

3 Experimental Methodology 

3.1 IFTS operating principle 

An IFTS detects the incoming infrared light using a Michelson interferometer. As seen in Figure 1, the incoming light 

is split into two paths by a beam splitter. The two beams are reflected by a mirror, recombined at the beam splitter, 

and then imaged onto a focal plane array (FPA). In one path, the mirror position and distance travelled by the light is 

fixed, while in the other the mirror moves during the measurement interval. The differences between these pathlengths 

induces constructive and destructive interference patterns in the intensity. Images captured at each distinct mirror 

position results in an interferogram data cube, which is then Fourier transformed and then calibrated to produce an 

absolute intensity data cube [17].  

 
Figure 1: Schematic of Michelson interferometer (a) inside an IFTS with inset showing a raw interferogram from one 

pixel detected by the FPA, which is processed by Fourier transformation and calibrated into an (b) intensity spectrum. 

3.2 Measuring infrared light using an IFTS 

In this study, two IFTSs over the LWIR (Telops Hyper-Cam Mini xLW, 750-1345 cm-1) and MWIR (Telops Hyper-

Cam MW, 2000-3300 cm-1) were used to simultaneously image a steam-assisted flare at a petrochemical refinery in 

Southern Ontario. The two cameras were each mounted on their own tripods positioned within approximately 2 meters 

of each other and aimed towards a flare stack located 582 m away. The camera parameters were set according to Table 

1 then individually calibrated using two built-in blackbody plates, each set at a unique temperature for two-point 

calibration. After calibration, the cameras were simultaneously set to measure the flare stack for approximately 30 

minutes, over which time the LWIR- and MWIR-IFTS collected 210 and 43 data cubes, respectively. 

The rapid motion of turbulent features in the flare plume causes fluctuations in the interferogram due to the finite 

time required to form the interferogram, leading to scene change artefacts in the transformed intensity spectrum. In 

this work, these artifacts were removed by calculating the median intensity for each pixel over all the data cubes [18]. 
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Table 1: Parameters set for the LWIR- and MWIR-IFTS. 

Parameters Units LWIR-IFTS MWIR-IFTS 

Image size Pixel count 184 × 120 128 × 128 

Image size m 81.4 × 53.1 26.1 × 26.1 

Frame rate Hz 1046 748 

Integration time μs 116 100 

Spectral resolution cm-1 1 1 

3.3 Inferring species concentration and plume temperature 

Concentration and temperature of species within the flare plume can be inferred from spectral intensities measured by 

an IFTS. The relationship between the physical properties of a gas and its infrared signature arises from molecular 

vibrations that cause its dipole moment to fluctuate (e.g., asymmetric stretching of atomic bonds in CO2). These 

fluctuations interact with the surrounding electromagnetic field, leading to absorption of infrared light at the same 

frequency as the molecular vibration. The magnitude of infrared light that is absorbed scales with concentration and 

temperature of a gas, and the quantitative relationship is defined by the radiative transfer equation (RTE).  

Species concentration and plume temperature at each pixel were found by regressing a modeled spectral intensity 

incident on the camera aperture along a pixel LOS, shown schematically in Figure 2, to the measured intensity. The 

model also assumes a static scene, as well as a uniform concentration and temperature profile along each pixel LOS. 

Under these conditions, the non-scattering RTE reduces to 

 ( ) ( ), , amb amb , interface , amb amb , amb

attenuation by spectral emittance of
ambient gas layer ambient gas layer

exp 1 exp L     I κ L I κ L I = − + − −
   (4) 

where Iη,L is the intensity entering the camera aperture, Iη, amb is the spectral intensity of a blackbody at ambient 

temperature, and Iη, interface is the spectral intensity leaving the interface between the flare plume and ambient gas layer 

given by 

 ( ) ( ), interface , plume plume , bg , plume plume , plume

attenuation by spectral emittance of
flare plume layer flare plume layer

exp 1 exp     I κ L I κ L I = − + − −
   (5) 

where Iη, plume is the spectral intensity of a blackbody at the flare plume temperature. The ambient temperature was 

measured by an onboard thermocouple to calculate Iη, amb, while Iη, bg was approximated from the average spectral 

intensity measured at select pixels just outside the plume region. With the assumption that the flare plume is 

axisymmetric, the plume length, Lplume, was inferred from the infrared image captured by the IFTS. 

 

 
Figure 2: Schematic diagram of an IFTS pointed at a flare plume, with nomenclature for Eqs. (4) and (5). 

In Eqs. (4) and (5), κη is the spectral absorption coefficient of the indicated layer, and is computed by summing 

the spectral absorption coefficients of each species in the layer 
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k
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The spectral absorption coefficient for the kth species depends on the mole fraction χk and plume temperature T 

(assuming that all species are at atmospheric pressure) and can be found on spectral line databases like HITRAN. In 
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practice, the values of χk and T in Eq. (6) are repeatedly adjusted until the modelled intensity Iη,L from Eq. (4) matches 

the measured intensity spectrum for a given pixel. 

3.4 Inferring the velocity field 

The two-dimensional velocity field, V = [Vx, Vy]T, was inferred from raw interferometer images that were normalized 

and filtered (i.e., mean intensity of frame subtracted) to remove stationary features prior to applying an optical flow 

algorithm. The change in the brightness pattern between two successive frames is modelled by taking the derivative 

of a pixel brightness B with respect to time t, and assuming that changes in the pixel brightness are only the result of 

objects traversing space, leading to 

 0x y

B B B
V V

x y t

  
+ + =

  
 (7) 

Here, the spatial and temporal gradients are pre-computed from the images via finite difference approximations. The 

underdetermined system of one equation and two unknowns (Vx and Vy) was solved using the Lucas-Kanade method 

[19], which assumes the velocity field within a window of n pixels is uniform. The number of pixels within the window 

is typically n > 2, leading to an overdetermined system of n equations and two unknowns. For a given window of n 

pixels, least squares minimization with a weighting scheme biasing the center pixel is used to determine the optimal 

combination of Vx and Vy that best satisfy all n equations simultaneously. The calculated velocity field can then be 

used to estimate the mass flow rate of flare plume species and flare CE. 

4 Results and Discussion 

4.1 Quantification of plume species with guaranteed presence 

The veracity of the present work was confirmed by comparing mass flow rates inferred from spectral intensities 

measured by the LWIR- and MWIR-IFTSs of CO2 and H2O, which are the dominant species in the flare plume. For 

each pixel, the mole fractions of the two species (required for mass flow rate calculation) were inferred by fitting 

modelled intensities to the spectra measured between 750-820 cm-1 from the LWIR-IFTS and 2000-2400 cm-1 from 

the MWIR-IFTS. Figure 3 shows an example spectral fit for a single flare plume pixel. The selected spectral ranges 

were expected to contain absorption features exclusive to CO2 and H2O, with the caveat that potential trace of CO also 

has absorption features between 2000-2400 cm-1. Consequently, the mole fraction of CO was also inferred from the 

MWIR data to avoid overestimating mole fractions of CO2 and H2O in the 2000-2400 cm-1 range.  

 
Figure 3: Modelled and measured spectral intensities from (a) LWIR- and (b) MWIR-IFTS for quantification of CO2 

and H2O at pixel PLWIR and PMWIR shown in the infrared image at 950 and 2391 cm-1, respectively.  

The measured LWIR spectrum in Figure 3a shows prominent features of H2O in the 1100-1345 cm-1 range that 

were excluded in the model fit because the region is contaminated by absorption features of potential hydrocarbons 

such as methane (CH4). In the MWIR spectrum shown in Figure 3b, the modelled and measured spectra show emission 

features at 2250 and 2400 cm-1 caused by the hot CO2 in the flare plume. The flat section between the two peaks is a 

result of absorption from CO2 at ambient temperature in the ambient layer between the flare plume and IFTS.  

The inferred mole fraction and plume temperature distributions of CO2 and H2O along a control line transecting 

the flare plume are shown in Figure 4c from the LWIR-IFTS, and Figure 4d from the MWIR-IFTS. Considering only 

the flare plume region, the mole fraction peaks of CO2 and H2O inferred from the LWIR-IFTS are 1.5 × 10-3 and 1.7 

× 10-2, respectively, consistent with the inferred peaks of 4.6 × 10-3 and 1.6 × 10-2 from the MWIR-IFTS. While the 

LWIR-IFTS does not detect absorption features pertaining to CO, trace quantities of CO were inferred from the 
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MWIR-IFTS. Figure 4e and Figure 4f show the species column densities resulting from Eq. (3) and velocity profile 

normal to the control line. The gap between ρCO2 and ρH2O is smaller in comparison to the gap between χCO2 and χH2O 

because CO2 is heavier than H2O. Meanwhile, peak normal velocities agree within 1% between the two IFTSs.  

 
Figure 4: (a, b) Intensity contour, (c, d) distributions of χk and T, and (e, f) distributions of ρk and Vn along control line 

Θ from the LWIR- (a, c, e) and MWIR-IFTS (b, d, f). Regions outside the flare plume are shaded out. 

The resulting mass flow rates inferred from the LWIR- and MWIR-IFTS are summarized in Table 2. The mass 

flow rate of H2O (ṁH2O) being more than twice as high as the mass flow rate of CO2 (ṁCO2) corroborates with the fact 

that the flare was steam-assisted during data collection. The mass flow rate differences between the two IFTSs are 

29% and 27% for ṁCO2 and ṁH2O, respectively. While the inferences between the IFTS are within the same order of 

magnitude, agreement is expected to improve by reducing noise in the measured MWIR spectra (Figure 3b). 

 

Table 2: Mass flow rates of CO2 and H2O in the flare plume, and the difference between the two IFTSs. 

Species mass flow rate LWIR-IFTS MWIR-IFTS Difference 

Carbon dioxide, ṁCO2 50 g/s 70 g/s 29% 

Water vapour, ṁH2O 190 g/s 150 g/s 27% 
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4.2 Species fingerprinting for estimating flare CE 

Hydrocarbons present within the flare plume must be identified and quantified to calculate the flare CE. The intensity 

spectrum modelled for CO2 and H2O are compared with the spectrum measured by the LWIR-IFTS in Figure 5a. 

Discrepancies between the model and measurement can be observed in the 900-1000 cm-1 range along with a distinct 

peak measured at 950 cm-1 that is not captured by the model. An infrared correlation table [20] shows that the alkene 

functional group has strong absorption features in the 900-1000 cm-1 range. Spectral signatures of the two simplest 

alkene molecules, ethylene (C2H4) and propene (C3H6), appear to answer the discrepancies in Figure 5a. Meanwhile, 

from the intensity spectrum measured by the MWIR-IFTS in Figure 5b, a distinct series of features in the 2800-3000 

cm-1 range is left unexplained by the intensity model for CO2, H2O and CO. This clue paired with emissions data from 

National Pollutant Release Inventory (NPRI, [21]) suggest that butane (C4H10) may be present in the flare plume.  

 

 
Figure 5: Modelled and measured intensity spectra for pixels (a) PLWIR and (b) PMWIR shown in Figure 3. Model 

accounts for CO2 and H2O (and CO for MWIR-IFTS). Shaded regions highlight discrepancies between model and 

measurement. 

In Figure 6, updated model predictions accounting for C2H4, C3H6, and C4H10 show improved fits against the 

measured spectra. However, detailed views of both LWIR and MWIR spectra show persistent disagreement between 

the model and measurement, suggesting that the selected combination of hydrocarbons is inconsistent with the actual 

hydrocarbons present within the flare plume. By incorrectly assuming the flare plume hydrocarbons are C2H4, C3H6, 

and C4H10, the inferred total mass flow rate of carbon affixed to the fuel needed in the denominator of Eq. (1) would 

have unquantifiable errors, and so too would the resulting flare CE. The lack of agreement between model and 

measurement in Figure 6 highlights the limitations of manually fingerprinting species, and the need for more advanced 

algorithms for accurate species detection for reliable estimations of flare CE. Until this automated algorithm is 

developed, prior information regarding the flare fuel would have to be known. 

 

 
Figure 6: Modelled spectral intensity accounting for CO2, H2O, C2H4, C3H6, and C4H10 (and CO for MWIR in (b)) 

fitted against spectral intensity measured at pixels (a) PLWIR and (b) PMWIR shown in Figure 3. 
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Future work in the short term will focus on collecting additional data cubes from the MWIR-IFTS to reduce the 

signal-to-noise ratio in the median-filtered spectral intensities, particularly in the 2500-3300 cm-1 range seen in Figure 

6b where most hydrocarbons exhibit spectral signatures. Improving the signal-to-noise ratio of the MWIR spectra will 

considerably improve the reliability of manual and automated species fingerprinting. Improvements will also be made 

to the spectroscopic model by accounting for non-uniformity of species concentrations and temperature within the 

flare plume [14]. Future work in the long term includes developing a physics-based Bayesian model accelerated with 

machine learning to predict and quantify unknown species along with their uncertainty and building a full-scale flare 

stack for model validation. These tasks will help improve the accuracy and reliability of estimating flare CE from 

standoff measurements using an IFTS. 

5 Conclusions 
The high spatial and spectral resolution of IFTS makes it a promising instrument for monitoring green house gases 

from a standoff distance. This work focused on comparing a LWIR- and MWIR-IFTS for the purpose of estimating 

flare CE. The two IFTS were setup to simultaneously measure spectral intensities from a steam-assisted petrochemical 

flare stack. A spectroscopic model was fitted to the measured spectral intensities to quantify the concentrations of 

species present in the flare plume. This was combined with a feature tracking algorithm to infer the velocity field. The 

mass flow rates of species in the flare plume were obtained from the concentrations and velocity field estimates. The 

mass flow rates of CO2 and H2O were inferred as 50 and 190 g/s from the LWIR-IFTS, similar to 70 and 150 g/s 

inferred from the MWIR-IFTS. The higher release rate of H2O relative to CO2 is expected for steam-assisted flares. 

While manual fingerprinting of hydrocarbons suggested the presence of C2H4, C3H6, and C4H10 in the flare plume, 

further comparisons of model and measured spectra suggested the true combination of hydrocarbons to differ. 

Accurate identification of the hydrocarbons present in the flare plume is required for reliable estimates of flare CE. 

This work demonstrates the potential for IFTS in the application of remote sensing and environmental monitoring, 

with further work needed in the area of automated species fingerprinting. 
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